A systems approach to quantum computation

J. M. Taylor Harvard University

Advisor: M. D. Lukin

Theory: H.-A. Engel, W. Dür¹, P. Zoller¹

Experiment: J. Petta, A. C. Johnson, E. A. Laird,

A. Yacoby², C. M. Marcus

Material: M. P. Hanson³, A. C. Gossard³

¹Innsbruck, ²Weismann, ³UCSB

References: [Petta et al. Science (2005), Taylor et al. Nature Physics (2005)]

In this talk:

- Fault-tolerance requirements
- Qubit choice and operations
- Non-local coupling
- Architecture

Fault-tolerance requirements

Fault-tolerant quantum computation

Assume:

- perfect quantum memory
- distance-independent 2-qubit gates
- fast accurate analog classical control circuitry
- operational errors *only*, with probability *p*

Threshold theorem(s):

• arbitrary computation possible for $p < p_{\text{thres}}$

The system-level requirements determine the qubit-level properties e.g., gates, memory, transport

The qubit-level properties determine the system-level requirements e.g., choice of code, concatenation, etc.

Quantum error correction

 Replace physical qubits / gates with encoded qubits / gates

- Requires: parallelism, memory ancillary qubits, efficient entropy extraction
- In practice: transport overhead, autonomous control

For single error correcting/ detecting codes:

$$p' \sim n_{\text{(gates in U+E)}} p^2$$

Alternative approaches?

- Cluster state computation [Raussendorf & Briegel 2001]
 - prepare highly entangled state
 - selective, sequential measurements
 - fault tolerance possible [Leung 2005]

- Hamiltonian-based computation
 - topological codes [Kitaev 1997]
 - adiabatic computation [Farhi 2000]

Different systems requirements!

Qubit choice and operations

How to choose a favorite poison

- Identify requirements
 - For gates:
 - What is fast?
 - What is error prone?
 - What is "hard"? (can we find a laser / pulse generator / material...)
 - For memory, transport:
 - Do we need "deep" storage? (I.e., combine optical qubit during logic with hyperfine states during waiting / transport)
 - Are we sensitive to other mechanisms in transport? How long will it take?
 - For alternative schemes:
 - What gives strong inter-qubit coupling? What builds quantum mechanically interesting states?
- Choose an appropriate coding scheme

Example: spin in quantum dots

- Qubit: single electron spin in a quantum dot [Loss & DiVincenzo, PRA (1998), Imamoglu *et al.* PRL (1999)]
- Interactions: coulomb / exchange + local gate control
 + local magnetic field control
 - Over the past few years (in GaAs)
 Control electron number from 0, 1, 2 . . .

[Sachrada et al. PRL (2002)]

Single-charge measurement using SET or QPC

[Devoret et al. Nature (2000), DiCarlo et al. PRL (2003)]

Spin state preparation / measurement

Long T_1 time at 4.0 Tesla (> ms observed)

[Hanson *et al.* PRL (2003), Elzerman *et al.* Nature (2004), Golovach, PRL (2004)]

 $T_2^* \sim 10 \text{ ns}$

Memory requirement: Dynamical decoherence free subspace

$$\boxed{ |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle, |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle}$$

[Zanardi PRA (2000), Taylor et al. PRL (2005)]

• Dephasing:

$$\alpha |\uparrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle \rightarrow \alpha |\uparrow\downarrow\rangle + e^{i\phi}\beta |\downarrow\uparrow\rangle$$

Exchange gate produces SWAP

$$\begin{cases}
\alpha |\downarrow\uparrow\rangle + e^{i\phi}\beta |\uparrow\downarrow\rangle \\
e^{i\phi}\alpha |\downarrow\uparrow\rangle + e^{i\phi}\beta |\uparrow\downarrow\rangle \\
e^{i\phi}(\alpha |\uparrow\downarrow\rangle + \beta |\downarrow\uparrow\rangle)
\end{cases}$$

- Protect against dephasing by repeated SWAP operations (a la NMR refocusing sequences). A good memory!
 - can we do logical computation in this space?
 - is local, autonomous control an option?

Autonomous, fast gates: operations with *intrinsic* interactions

• Double quantum dot

- Singlet and triplet
 - Molecular: (1,1)
 - Weak tunnel coupling (no exchange)
 - Atomic: (0,2)
 - Exchange splits singlet and triplet
 - Change bias for transition

- Load from leads to produce a singlet: kT < J
- "Rapid adiabatic" transfer to (1,1) produces logical zero

- Load from leads to produce a singlet: kT < J
- "Rapid adiabatic" transfer to (1,1) produces logical zero
- Reverse: spin-to-charge conversion

- Load from leads to produce a singlet: kT < J
- "Rapid adiabatic" transfer to (1,1) produces logical zero
- Reverse: spin-to-charge conversion
- Exchange gates for Z rotations

- Load from leads to produce a singlet: kT < J
- "Rapid adiabatic" transfer to (1,1) produces logical zero
- Reverse: spin-to-charge conversion
- Exchange gates for Z rotations
- SWAP to protect against nuclei. *Dynamical* DFS

Dynamical decoherence free subspace: experiment

A better qubit

 $T_2 > 100 T_2^* > 10^3$ gate operations likely limit: electron-mediated nuclear flops

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. Lukin, C. Marcus Science (2005)

Improving operations: feedback with slow measurement

- Can we measure the nuclear field?
 - Ramsey: $\pi/2$ pulse, wait, $\pi/2$ pulse, measure, repeat
 - Double-dot case: separate, wait, measure, repeat
 - Slow part: measurement!

• Feedback: use result to change phase / estimate of frequency of future operations

Improving quantum operations

 Feedback corrects low frequency noise

• Low-noise operating point "quantum transistor" see superconducting qubits

 Composite pulses removes low frequency noise

$$R_{x,BB1}^{\pi/2} = U R_Z^{-\phi} U^4 R_Z^{-2\phi} U^8 R_Z^{2\phi} U^4 R_Z^{\phi} U$$

[Van der Sypen & Chuang, RMP 2004]

Non-local coupling

Non-local coupling: A (qubit) shuttle

Can be highly parallel

Non-local coupling: "Flying" qubits

• Example: cavity QED (optical, μ wave resonator) long distance, but not parallel

 $\mathbf{V}_{\mathbf{a}}$

Non-local coupling: "Flying" qubits

• How to scale? Limited gate bandwidth in any given bus... choice of replacement rules

• What does it "look" like?

• Or, composite scheme

Preparing long-distance entanglement through shuttling with DFS

- Use generation of entangled singlet pairs of qubits: exchange only approach feasible
- Adiabatically pump charge (qubits) through a series of potential wells
 - Averages over fluctuating fields
 - Work entirely in singlet-triplet dynamical DFS to further reduce errors
- Local operations purify fidelity of final pair (and remove leakage)
- Teleportation-based non-local gates implemented with purified pair
- Bandwidth "on-demand"

Architecture

A shuttle-based architecture

Example: leakage error detection

- Recall: 2-qubit gate is singlet-triplet dependent;
 - $-T_0,T_{\pm}$ operate the same way
- But, X rotations only switch S, T_0 (T_{\pm} untouched)
- Idea: use ancillary qubit to check X rotations with 2-qubit gates
 - Logical subspace untouched, ancilla result 0
 - $-T_{\pm}$ states give result 1, replace with logical 0

Error correction in the architecture

A threshold calculation

Eight "locations" to replace recursively

	error prob	memory err prob
1-qubit unitaries	p_1	m_1
2-qubit unitaries	p_2	m_2
Measurement of single spin	p_3	m_3
Shuttle one qubit l quantum dots	lp_4	lm_4

- Consider error model for each level of recursion: p1-p4, m1-m4
- Find a map from previous level to next level (increasing distance, increasing memory time)
- Overestimate: some benign errors counted as crashes

Dimensionality

Scaling as a function of dimension

Outlook

- Systems requirements => qubit choices
 - Use fundamental resources: e.g., charge control, static magnetic fields, exchange interaction
 - feedback, noise-free points, composite pulses
- Long-range coupling mechanisms
 - Shuttling (local parallelism "for free")
 - Photons (parallelism difficulties)
- Architecture
 - Dimensionality plays important role for finite memory / transport